杭州电子科技大学·计算机学院

科学研究

您当前的位置:首页  科学研究  学术动态

【学术报告会】“几何计算”学术报告会通知

阅读量:208 发布时间:2018-06-12 15:13:28

时间613日(星期三)10:00-12:00

地点6教南528 报告厅

日程

10:00-11:00 Smooth Splines on Surfaces with General Topology

Bernard Mourrain 教授,法国国家信息与自动化研究所(INRIA

  

11:00-12:00 A polygonal spline method for general 2nd-order elliptic equations and its applications

来明骏 教授,美国佐治亚大学

  

欢迎广大师生参会学习交流!

  

附报告摘要与专家简介:

报告题目Smooth Splines on Surfaces with General Topology

报告人Bernard Mourrain 教授,法国国家信息与自动化研究所(INRIA

报告摘要In CAGD, a standard representation of shapes is by parameterized surfaces or volumes based on tensor product B-spline functions, which are the basis of the space of piecewise polynomial functions on a grid with a given regularity and degree. These pieces are trimmed and assembled to model complex objects with arbitrary topology. We would like to replace this type of constructions by structured spline representations adapted to the shape of a given model. We consider the space of piecewise polynomial differentiable functions on a quad mesh of general topology. This vector space of spline functions is characterized by glueing data across the shared edges. Using algebraic techniques, which involve the analysis of the module of syzygies of the glueing data, we give dimension formula for the space of geometrically smooth splines of degree k, for arbitrary topology when $k$ is big enough. We provide explicit constructions of basis functions attached respectively to vertices, edges and faces. Applications to Isogeometric Analysis are briefly discussed. This is a joint work with A. Blidia and N. Villamizar.

报告人简介

Bernard MOURRAIN教授长期从事在几何造型、计算机辅助几何设计、计算符号代数等方向的研究。符号计算领域Journal of Symbolic ComputationSIAM Journal on Applied Algebra and Geometry编委成员、计算几何领域Theoretical Computer Science, Computer Aided Geometric Design等特邀编辑。多个计算几何领域国际核心期刊,如Applicable Algebra in Engineering Communication and Computing, Discrete Applied Mathematics, Theoretical Computer Science, Computer Aided Geometric Design, Computer Aided Design, Math. Of Comp, Math, Review, CRAS的评审人以及ISSACGeometric Modeling and ProcessingSymposium on Solid and Physical Modeling, Symbolic-Numeric Computation, MEGA, ACA, ADG, ACSM等计算几何与符号计算国际会议Program chair, program co-chair以及Member of program committees.

  

报告题目A polygonal spline method for general 2nd-order ellipticequations and its applications

报告人:来明骏 教授,美国佐治亚大学

报告摘要We explain how to use polygonal splines to numerically solve second-order elliptic partial differential equations. The convergence of the polygonal spline method will be studied. Also, we will use this approach to numerically study the solution of some mixed parabolic and hyperbolic partial differential equations. Comparison with standard bivariate spline method will be given to demonstrate that our polygonal splines have some better numerical performance.

  

报告人简介

Dr. Ming-Jun Lai is a professor of mathematics, University of Georgia, U.S.A. He has been a professor for more than 20 years. His research has been supported by U.S. National Science Foundation many times and he has published more than 120 papers with one monograph on multivariate splines.He has graduated 16 Ph.D. and has 3 Ph.D. students under his supervision now. He is an expert on multivariate splines and their applications in computer aided geometric design, numerical solution of partial differential equations, and wavelet analysis.